properties of hyperreals under field operations


Let b* denote the set of finite (or limited) hyperreal numbers and 0* the set of infinitesimalMathworldPlanetmathPlanetmath hyperreal numbers.

- We have that

  1. 1.

    b* and 0* are subrings of *.

  2. 2.

    0* is an ideal of b*.

  3. 3.

    the sum of an infiniteMathworldPlanetmath hyperreal with a finite hyperreal is infinite.

  4. 4.

    the inversePlanetmathPlanetmathPlanetmath of a non-zero infinitesimal hyperreal is infinite.

  5. 5.

    the inverse of an infinite hyperreal is infinitesimal.

The above properties can be described more informally like:

  1. 1.

    finite + finite = finite

  2. 2.

    infinitesimal + infinitesimal = infinitesimal

  3. 3.

    infinite + finite = infinite

  4. 4.

    finite × finite = finite

  5. 5.

    infinitesimal × finite = infinitesimal

  6. 6.

    infinitesimal-1 = infinite

  7. 7.

    infinite-1 = infinitesimal

Title properties of hyperreals under field operations
Canonical name PropertiesOfHyperrealsUnderFieldOperations
Date of creation 2013-03-22 17:26:19
Last modified on 2013-03-22 17:26:19
Owner asteroid (17536)
Last modified by asteroid (17536)
Numerical id 4
Author asteroid (17536)
Entry type Result
Classification msc 26E35