properties of O and o


The following properties of Landau notationPlanetmathPlanetmath hold:

  1. 1.

    o(f) and O(f) are vector spaces, i.e. if g,ho(f) (resp. in O(f)) then λg+μho(f) (resp. in O(f)) whenever λ,μ; In particular o(f)+o(f)=o(f) and λo(f)=o(f);

  2. 2.

    if λ0 then λo(f)=o(f) and λO(f)=O(f);

  3. 3.

    fo(g)=o(fg), fO(g)=O(fg);

  4. 4.

    o(g)α=o(gα), O(g)α=O(gα);

  5. 5.

    o(f)O(f); on the other hand if fo(g) then O(f)o(g);

  6. 6.

    o(f)o(g) if fO(g); analogously O(f)O(g) if fO(g);

  7. 7.

    o(o(f))=o(f), O(O(f))=O(f), o(O(f))=o(f), O(o(f))=o(f).

Here are some examples. First of all we consider Taylor formula. If x0(a,b) and f:(a,b) has n derivatives, then

f(x)k=0nf(k)(x0)k!(x-x0)k+o((x-x0)n).

As a consequence, if f has n+1 derivatives, we can replace o((x-x0)n) with O((x-x0)n+1) in the previous formula.

For example:

ex1+x+12x2+16x4+O(x5)1+x+12x2+16x4+o(x4).

Using the properties stated above we can compose and iterate Taylor expansionsMathworldPlanetmath. For example from the expansions

sinxx+x33!+o(x4),ex1+x+x22+O(x3),
cosx1-x22+x44!+o(x5)1-x22+O(x4),log(1+x)x-x22+o(x2)

we get

(xsinx-e(x2))log(cosx) (x(x-x33!+o(x4))-(1+x2+x42+O((x2)3))log(1-x22+x44!+o(x5))
=(x2-x43!+o(x4)-1-x2-x42+O(x6))(-x22+x44!+o(x5)-(-x22+o(x3))22+o((-x22+o(x3))2))
=(-1-23x4+o(x4)+O(x6))(-x22+x44!+o(x5)-x44-2x22o(x3)+(o(x3))22+o(x44+o(x4)))
=(-1-23x4+o(x4))(-x22+x44!+o(x5)+x48+o(x5)+o(x6)+o(x4))
=(-1-23x4+o(x4))(-x22+6x4+o(x4))
=-x22-6x4+o(x4)+x4O(x2)+o(x4)O(x2)
=-x22-6x4+o(x4)+O(x6)+o(x6)
=-x22-6x4+o(x4)
Title properties of O and o
Canonical name PropertiesOfOAndO
Date of creation 2013-03-22 15:15:45
Last modified on 2013-03-22 15:15:45
Owner paolini (1187)
Last modified by paolini (1187)
Numerical id 7
Author paolini (1187)
Entry type Result
Classification msc 26A12
Related topic FormalDefinitionOfLandauNotation