properties of the Lebesgue integral of Lebesgue integrable functions


Theorem.

Let (X,B,μ) be a measure spaceMathworldPlanetmath, f:X[-,] and g:X[-,] be Lebesgue integrableMathworldPlanetmath functions, and A,BB. Then the following properties hold:

  1. 1.

    |Af𝑑μ|A|f|𝑑μ

  2. 2.

    If fg, then Af𝑑μAg𝑑μ.

  3. 3.

    Af𝑑μ=XχAf𝑑μ, where χA denotes the characteristic functionMathworldPlanetmathPlanetmathPlanetmathPlanetmath of A

  4. 4.

    If c, then Acf𝑑μ=cAf𝑑μ.

  5. 5.

    If μ(A)=0, then Af𝑑μ=0.

  6. 6.

    A(f+g)𝑑μ=Af𝑑μ+Ag𝑑μ.

  7. 7.

    If AB=, then ABf𝑑μ=Af𝑑μ+Bf𝑑μ.

  8. 8.

    If f=g almost everywhere with respect to μ, then Af𝑑μ=Ag𝑑μ.

Proof.
  1. 1.
    |Af𝑑μ| =|Af+𝑑μ-Af-𝑑μ| by definition
    |Af+𝑑μ|+|Af-𝑑μ| by the triangle inequalityMathworldMathworld
    =Af+𝑑μ+Af-𝑑μ by the
    properties of the Lebesgue integral of nonnegative measurable functionsMathworldPlanetmath (property 1),
    =A(f++f-)𝑑μ by the
    properties of the Lebesgue integral of nonnegative measurable functions (http://planetmath.org/PropertiesOfTheLebesgueIntegralOfNonnegativeMeasurableFunctions) (property 7),
    =A|f|𝑑μ
  2. 2.

    Since fg, the following must hold:

    • f+=max{0,f}max{0,g}=g+;

    • -f-g;

    • f-=max{0,-f}max{0,-g}=g-.

    Thus, by the properties of the Lebesgue integral of nonnegative measurable functions (http://planetmath.org/PropertiesOfTheLebesgueIntegralOfNonnegativeMeasurableFunctions) (property 2), Af+𝑑μAg+𝑑μ and Af-𝑑μAg-𝑑μ. Therefore, -Af-𝑑μ-Ag-𝑑μ. Hence, Af+𝑑μ-Af-𝑑μAg+𝑑μ-Af-𝑑μAg+𝑑μ-Ag-𝑑μ. It follows that Af𝑑μAg𝑑μ.

  3. 3.
    Af𝑑μ =Af+𝑑μ-Af-𝑑μ by definition
    =XχAf+𝑑μ-XχAf-𝑑μ by the
    properties of the Lebesgue integral of nonnegative measurable functions (http://planetmath.org/PropertiesOfTheLebesgueIntegralOfNonnegativeMeasurableFunctions) (property 3),
    =X(χAf)+𝑑μ-X(χAf)-𝑑μ
    =XχAf𝑑μ by definition
  4. 4.

    If c0, then

    Acf𝑑μ =A(cf)+𝑑μ-A(cf)-𝑑μ by definition
    =Acf+𝑑μ-Acf-𝑑μ
    =cAf+𝑑μ-cAf-𝑑μ by the
    properties of the Lebesgue integral of nonnegative measurable functions (http://planetmath.org/PropertiesOfTheLebesgueIntegralOfNonnegativeMeasurableFunctions) (property 5)
    =c(Af+𝑑μ-Af-𝑑μ)
    =cAf𝑑μ by definition.

    If c<0, then

    Acf𝑑μ =A(cf)+𝑑μ-A(cf)-𝑑μ by definition
    =A(-c)f-𝑑μ-A(-c)f+𝑑μ
    =-cAf-𝑑μ+cAf+𝑑μ by the
    properties of the Lebesgue integral of nonnegative measurable functions (http://planetmath.org/PropertiesOfTheLebesgueIntegralOfNonnegativeMeasurableFunctions) (property 5)
    =c(-Af-𝑑μ+Af+𝑑μ)
    =cAf𝑑μ by definition.
  5. 5.

    Note that Af+𝑑μ=0 and Af-𝑑μ=0 by the properties of the Lebesgue integral of nonnegative measurable functions (http://planetmath.org/PropertiesOfTheLebesgueIntegralOfNonnegativeMeasurableFunctions) (property 6). It follows that Af𝑑μ=0.

  6. 6.

    Let {sn} be a nondecreasing sequenceMathworldPlanetmath of nonnegative simple functionsMathworldPlanetmath converging pointwise to f++g+ and {tn} be a nondecreasing sequence of nonnegative simple functions converging pointwise to f-+g-. Note that, for every n, Asn𝑑μ-Atn𝑑μ=A(sn-tn)𝑑μ.

    Since f and g are integrable and |f+g||f|+|g|, f+g is integrable. Thus,

    Af𝑑μ+Ag𝑑μ =Af+𝑑μ-Af-𝑑μ+Ag+𝑑μ-Ag-𝑑μ by definition
    =Af+𝑑μ+Ag+𝑑μ-(Af-𝑑μ+Ag-𝑑μ)
    =A(f++g+)𝑑μ-(A(f-+g-)𝑑μ) by the
    properties of the Lebesgue integral of nonnegative measurable functions (http://planetmath.org/PropertiesOfTheLebesgueIntegralOfNonnegativeMeasurableFunctions) (property 7)
    =limnAsn𝑑μ-(limnAtn𝑑μ) by Lebesgue’s monotone convergence theoremMathworldPlanetmath
    =limn(Asn𝑑μ-Atn𝑑μ)
    =limnA(sn-tn)𝑑μ
    =A(f++g+-(f-+g-))𝑑μ by Lebesgue’s dominated convergence theorem
    =A(f+-f-+g+-g-)𝑑μ
    =A(f+g)𝑑μ by definition.
  7. 7.
    ABf𝑑μ =ABf+𝑑μ-ABf-𝑑μ by definition
    =Af+𝑑μ+Bf+𝑑μ-(Af-𝑑μ+Bf-𝑑μ) by the
    properties of the Lebesgue integral of nonnegative measurable functions (http://planetmath.org/PropertiesOfTheLebesgueIntegralOfNonnegativeMeasurableFunctions) (property 8),
    =Af+𝑑μ-Af-𝑑μ+Bf+𝑑μ-Bf-𝑑μ
    =Af𝑑μ+Bf𝑑μ by definition
  8. 8.

    Let E={xA:f(x)=g(x)}. Since f and g are measurable functions and A𝔅, it must be the case that E𝔅. Thus, A-E𝔅. By hypothesisMathworldPlanetmath, μ(AE)=0. Note that E(AE)= and E(AE)=A. Thus, Af𝑑μ=Ef𝑑μ+AEf𝑑μ=Ef𝑑μ+0=Eg𝑑μ+0=Eg𝑑μ+AEg𝑑μ=Ag𝑑μ.

Title properties of the Lebesgue integral of Lebesgue integrable functions
Canonical name PropertiesOfTheLebesgueIntegralOfLebesgueIntegrableFunctions
Date of creation 2013-03-22 16:14:01
Last modified on 2013-03-22 16:14:01
Owner Wkbj79 (1863)
Last modified by Wkbj79 (1863)
Numerical id 19
Author Wkbj79 (1863)
Entry type Theorem
Classification msc 26A42
Classification msc 28A25
Related topic PropertiesOfTheLebesgueIntegralOfNonnegativeMeasurableFunctions