property of infinite simple group
Although much recent work has been done to classify the finite simple groups, infinite simple groups have properties which make the study more difficult. Among them is the following basic result.
Theorem 1.
If a group is infinite and simple then it has no proper subgroups of finite index.
Proof.
Let be an infinite simple group and . Then acts on the cosets of and this induces a homomorphism form to where . If has finite index in then is finite so maps homomorphically into the finite group . Thus the kernel of the homomorphism is non-trivial. As is simple, the kernel is . As contains the kernel, . ∎
This means that infinite simple groups do not act on finite sets so we cannot invoke clever arguments about the configuration of numbers. However linear representations may still apply. For example, for an infinite field is simple, infinite, and can be represented in through the exponential map of a Chevalley basis of the Lie algebra .
Title | property of infinite simple group |
---|---|
Canonical name | PropertyOfInfiniteSimpleGroup |
Date of creation | 2013-03-22 16:08:21 |
Last modified on | 2013-03-22 16:08:21 |
Owner | Algeboy (12884) |
Last modified by | Algeboy (12884) |
Numerical id | 5 |
Author | Algeboy (12884) |
Entry type | Result |
Classification | msc 20E32 |
Related topic | ExistenceOfMaximalSubgroups |