quasiconformal mapping


Quasiconformal mappings are mappings of the complex plane to itself that are “almost” conformal. That is, they do not distort angles arbitrarily and this “distortion” is uniformly bounded throughout their domain of definition. Alternatively one can think of quasiconformal mappings as mappings which take infinitesimalMathworldPlanetmath circles to infinitesimal ellipses. For example invertible linear mapsMathworldPlanetmath are quasiconformal.

More rigorously, suppose f is a mapping of the complex plane to itself, and here we will only consider sense-preserving mappings, that is mappings with a positive jacobianMathworldPlanetmathPlanetmath.

Definition.

Define the dilatation of the mapping f at the point z as

Df(z):=|fz|+|fz¯||fz|-|fz¯|1,

and define the maximal dilatation of the mapping as

Kf:=supzDf(z).

Now we are ready to define what it means for f to be quasiconformal.

Definition.

For f as above, we will call f quasiconformal if the maximal dilatation of f is finite. We will say that f is K-quasiconformal mapping if the maximal dilatation of this mapping is K.

Note that sometimes the K-quasiconformal is used to that the dilatation is K or lower.

It is easy to see that a conformal sense-preserving mapping has a dilatation of 1 since |fz¯|=0. We can further define several other related quantities

Definition.

For f as above, define the small dilatation as

df(z):=|fz¯||fz|.

Again for sense-preserving maps this quantity is less then 1 and it is equal to 0 if the mapping is conformal. Some authors call a map k-quasiconformal if the small dilatation is bounded by k. It is however not ambiguous as the large dilatation is always greater then or equal to 1. Furthermore this is related to the large dilatation by

df:=Df-1Df+1.
Definition.

For f as above, define the complex dilatation as

μf(z):=fz¯fz.

The complex dilatation now appears in the Beltrami differential equation

fz¯(z)=μf(z)fz(z).

This means that a quasiconformal mapping is a solution to the Beltrami equation where a non-negative measurable μf is uniformly bounded by some k<1.

The above results are stated for f:, but the statements are exactly the same if you take f:G for an open set G.

The theory generalizes to other dimensionsPlanetmathPlanetmath as well. For example in one real dimension, the analogous mappings are called quasisymmetric. It is a well-known theorem of Beurling and Ahlfors (http://planetmath.org/BeurlingAhlforsQuasiconformalExtension) that an of a mapping of the real line to itself is quasiconformal if and only if the mapping is quasisymmetric.

References

  • 1 L. V. Ahlfors. . Van Nostrand-Reinhold, Princeton, New Jersey, 1966
  • 2 J. Lebl. . . Also available at http://www.jirka.org/thesis.pdfhttp://www.jirka.org/thesis.pdf
Title quasiconformal mapping
Canonical name QuasiconformalMapping
Date of creation 2013-03-22 14:06:43
Last modified on 2013-03-22 14:06:43
Owner jirka (4157)
Last modified by jirka (4157)
Numerical id 13
Author jirka (4157)
Entry type Definition
Classification msc 30C65
Classification msc 30C62
Synonym K-quasiconformal mapping
Related topic QuasisymmetricMapping
Related topic BeurlingAhlforsQuasiconformalExtension
Related topic ConformalMapping
Related topic BeltramiDifferentialEquation
Defines dilatation
Defines small dilatation
Defines maximal dilatation
Defines complex dilatation
Defines K-quasiconformal
Defines K-quasiconformal
Defines quasiconformal