RMS Value of the Fourier Series


RMS Value of the Fourier Series Swapnil Sunil Jain December 28, 2006

RMS Value of the Fourier Series

If a function f(t) is given by its Fourier series i.e.

f(t) = a02+k=1[akcos(kωt)+bksin(kωt)]

The RMS value Frms of f(t) is

Frms = a024+12k=1ak2+bk2

Proof:

The RMS value of a function f(t) is, by definition, given by

Frms = 1Tt0t0+T[f(t)]2𝑑t

Then,

Frms =1Tt0t0+T[f(t)]2𝑑t
=1Tt0t0+Tf(t)f(t)𝑑t
=1Tt0t0+Tf(t)(a02+k=1[akcos(kωt)+bksin(kωt)])𝑑t
=1Tt0t0+T(a0f(t)2+k=1[akf(t)cos(kωt)+bkf(t)sin(kωt)])𝑑t
=1T(t0t0+Ta0f(t)2𝑑t+k=1[t0t0+Takf(t)cos(kωt)𝑑t+t0t0+Tbkf(t)sin(kωt)𝑑t])
=1T(a02t0t0+Tf(t)𝑑t+k=1[akt0t0+Tf(t)cos(kωt)𝑑t+bkt0t0+Tf(t)sin(kωt)𝑑t])
=1T(a02(a0T2)+k=1[ak(akT2)+bk(bkT2)])
=a024+k=1ak22+bk22
=a024+12k=1ak2+bk2
Title RMS Value of the Fourier Series
Canonical name RMSValueOfTheFourierSeries1
Date of creation 2013-03-11 19:30:56
Last modified on 2013-03-11 19:30:56
Owner swapnizzle (13346)
Last modified by (0)
Numerical id 1
Author swapnizzle (0)
Entry type Definition