result on quadratic residues
Theorem.
Let be an odd prime. Then is a quadratic residue![]()
modulo if and only if .
Proof. Preliminary to the proof, we remark first that is a quadratic residue modulo , where is an odd prime, if and only if .
If then
Now if , then
Thus, , and if and only if .
| Title | result on quadratic residues |
|---|---|
| Canonical name | ResultOnQuadraticResidues |
| Date of creation | 2013-03-22 16:08:09 |
| Last modified on | 2013-03-22 16:08:09 |
| Owner | gilbert_51126 (14238) |
| Last modified by | gilbert_51126 (14238) |
| Numerical id | 25 |
| Author | gilbert_51126 (14238) |
| Entry type | Theorem |
| Classification | msc 11-00 |