result on quadratic residues
Theorem. Let be an odd prime. Then is a quadratic residue modulo if and only if .
Proof. Preliminary to the proof, we remark first that is a quadratic residue modulo , where is an odd prime, if and only if .
If then
Now if , then
Thus, , and if and only if .
Title | result on quadratic residues |
---|---|
Canonical name | ResultOnQuadraticResidues |
Date of creation | 2013-03-22 16:08:09 |
Last modified on | 2013-03-22 16:08:09 |
Owner | gilbert_51126 (14238) |
Last modified by | gilbert_51126 (14238) |
Numerical id | 25 |
Author | gilbert_51126 (14238) |
Entry type | Theorem |
Classification | msc 11-00 |