some theorem schemas of intuitionistic propositional logic


We present some theorem schemas of intuitionistic propositional logicPlanetmathPlanetmath and their deductionsMathworldPlanetmathPlanetmath, based on the axiom system given in this entry (http://planetmath.org/AxiomSystemForIntuitionisticLogic).

1. ABBA

Proof.

From the deduction

  1. 1.

    ABA,

  2. 2.

    BBA,

  3. 3.

    (ABA)((BBA)(ABBA)),

  4. 4.

    (BBA)(ABBA),

  5. 5.

    ABBA,

so we get ABiBA, and therefore iABBA by the deduction theoremMathworldPlanetmath. ∎

2. (AB)CA(BC)

Proof.

From the deduction

  1. 1.

    (AB)CAB,

  2. 2.

    (AB)CC,

  3. 3.

    (AB)C,

  4. 4.

    AB,

  5. 5.

    C,

  6. 6.

    ABA,

  7. 7.

    ABB,

  8. 8.

    A,

  9. 9.

    B,

  10. 10.

    B(CBC),

  11. 11.

    CBC,

  12. 12.

    BC,

  13. 13.

    A(BCA(BC)),

  14. 14.

    BCA(BC),

  15. 15.

    A(BC),

so (AB)CiA(BC), and therefore i(AB)CA(BC) by the deduction theorem. ∎

3. (A(BC))((AB)(AC))

Proof.

From the deduction

  1. 1.

    (AB)((A(BC))(AC)),

  2. 2.

    AB,

  3. 3.

    (A(BC))(AC),

  4. 4.

    A(BC),

  5. 5.

    AC,

so A(BC),ABiAC. By two applications of the deduction theorem, i(A(BC))((AB)(AC)). ∎

4. A¬AB

Proof.

From the deduction

  1. 1.

    A¬AA,

  2. 2.

    A¬A¬A,

  3. 3.

    A¬A,

  4. 4.

    ¬A,

  5. 5.

    A,

  6. 6.

    ¬A(AB),

  7. 7.

    AB,

  8. 8.

    B

so A¬AiB. By the deduction theorem, iA¬AB. ∎

5. A¬¬A

Proof.

From the deduction

  1. 1.

    A(¬AA),

  2. 2.

    A,

  3. 3.

    ¬AA,

  4. 4.

    (¬AA)((¬A¬A)¬¬A),

  5. 5.

    (¬A¬A)¬¬A,

  6. 6.

    ¬A¬A,

  7. 7.

    ¬¬A,

so Ai¬¬A. By the deduction theorem, iA¬A¬A. ∎

In the proof above, we use the schema BB in step 6 of the deduction, because iBB, as a result of applying the deduction theorem to BiB.

6. ¬¬¬A¬A

Proof.

From the deduction

  1. 1.

    (A¬¬A)((A¬¬¬A)¬A),

  2. 2.

    A¬¬A,

  3. 3.

    (A¬¬¬A)¬A,

  4. 4.

    ¬¬¬A(A¬¬¬A),

  5. 5.

    ¬¬¬A,

  6. 6.

    A¬¬¬A,

  7. 7.

    ¬A,

so A¬¬A,¬¬¬Ai¬A. By the deduction theorem, A¬¬A,i¬¬¬A¬A. Since iA¬A¬A, i¬¬¬A¬A as a result. ∎

In the above proof, we use the fact that if iC and CiD, then iD. This is the result of the following fact: if iC and iCD, then iD.

7. (AB)(¬B¬A)

Proof.

From the deduction

  1. 1.

    (AB)((A¬B)¬A),

  2. 2.

    AB,

  3. 3.

    (A¬B)¬A,

  4. 4.

    ¬B(A¬B),

  5. 5.

    ¬B,

  6. 6.

    A¬B,

  7. 7.

    ¬A,

so AB,¬Bi¬A. Applying the deduction theorem twice gives us i(AB)(¬B¬A). ∎

8. ¬(A¬A)

Proof.

From the deduction

  1. 1.

    (A¬AB)((A¬A¬B)¬(A¬A)),

  2. 2.

    A¬AB,

  3. 3.

    (A¬A¬B)¬(A¬A),

  4. 4.

    A¬A¬B,

  5. 5.

    ¬(A¬A).

Since iA¬AB and iA¬A¬B are instances of theorem schema 4 above, i¬(A¬A) as a result. ∎

This also shows that iB¬(A¬A), which is the result of applying modus ponensMathworldPlanetmath to ¬(A¬A) to ¬(A¬A)(B¬(A¬A)).

9. (BA¬A)¬B

Proof.

From the deduction

  1. 1.

    BA¬A,

  2. 2.

    (BA¬A)((B¬(A¬A))¬B),

  3. 3.

    (B¬(A¬A))¬B,

  4. 4.

    B¬(A¬A),

  5. 5.

    ¬B,

so BA¬Ai¬B. Applying the deduction theorem gives us i(BA¬A)¬B. ∎

10. ¬¬(A¬A)

Proof.

From the deduction

  1. 1.

    A(A¬A),

  2. 2.

    (A(A¬A))(¬(A¬A)¬A),

  3. 3.

    ¬(A¬A)¬A,

  4. 4.

    ¬A(A¬A),

  5. 5.

    (¬A(A¬A))(¬(A¬A)¬¬A),

  6. 6.

    ¬(A¬A)¬¬A,

  7. 7.

    (¬(A¬A)¬A)((¬(A¬A)¬¬A)¬¬(A¬A)),

  8. 8.

    (¬(A¬A)¬¬A)¬¬(A¬A),

  9. 9.

    ¬¬(A¬A),

Remark. Again from this entry (http://planetmath.org/AxiomSystemForIntuitionisticLogic), if we use the second axiom system instead, keeping in mind that ¬A means A, the following are theorem schemas:

1. (AB)((A(BC))(AC)). The proof of this is essentially the same as the proof of the third theorem schema above.

2. (AB)((A¬B)¬A). This is just (AB)((A(B))(A)), an instance of the theorem schema above.

3. ¬A(AB).

Proof.

From the deduction

  1. 1.

    ¬A (which is A),

  2. 2.

    A,

  3. 3.

    ,

  4. 4.

    B,

  5. 5.

    B

so ¬A,AiB. By two applications of the deduction theorem, we get i¬A(AB). ∎

Title some theorem schemas of intuitionistic propositional logic
Canonical name SomeTheoremSchemasOfIntuitionisticPropositionalLogic
Date of creation 2013-03-22 19:31:21
Last modified on 2013-03-22 19:31:21
Owner CWoo (3771)
Last modified by CWoo (3771)
Numerical id 22
Author CWoo (3771)
Entry type Definition
Classification msc 03B20
Classification msc 03F55
Related topic AxiomSystemForIntuitionisticLogic