ultrametric space


The metric space(X,d)  is called an ultrametric space, if its metric d is an ultrametric, i.e. if

d(x,z)max{d(x,y),d(y,z)}x,y,zX.

Example.  The field together with any of its p-adic metrics

dp(x,y)=|x-y|p,

where  ||p  is the p-adic valuation (http://planetmath.org/PAdicValuation) of ,  forms an ultrametric space.

Title ultrametric space
Canonical name UltrametricSpace
Date of creation 2013-03-22 14:55:28
Last modified on 2013-03-22 14:55:28
Owner pahio (2872)
Last modified by pahio (2872)
Numerical id 6
Author pahio (2872)
Entry type Definition
Classification msc 54E35
Related topic UltrametricTriangleInequality
Related topic Ultrametric