Urysohn metrization theorem

Let X be a topological spaceMathworldPlanetmath which is regularPlanetmathPlanetmathPlanetmathPlanetmath and second countable and in which singleton sets are closed. Then X is metrizable.

Title Urysohn metrization theoremMathworldPlanetmath
Canonical name UrysohnMetrizationTheorem
Date of creation 2013-03-22 12:12:36
Last modified on 2013-03-22 12:12:36
Owner Evandar (27)
Last modified by Evandar (27)
Numerical id 7
Author Evandar (27)
Entry type Theorem
Classification msc 54E35
Related topic SecondCountable
Related topic Metrizable