using convolution to find Laplace transform


We start from the (see the table of Laplace transformsDlmfMathworldPlanetmath)

eαt1s-α,1tπs  (s>α) (1)

where the curved from the Laplace-transformed functionsMathworldPlanetmath to the original functions.  Setting  α=a2  and dividing by π in (1), the convolution property of Laplace transform yields

1(s-a2)sea2t*1πt=0tea2(t-u)1πu𝑑u.

The substitution (http://planetmath.org/ChangeOfVariableInDefiniteIntegral)  a2u=x2  then gives

1(s-a2)sea2tpi0ate-x2ax2xa2𝑑x=ea2ta2π0ate-x2𝑑x=ea2taerfat.

Thus we may write the formula

{ea2terfat}=a(s-a2)s  (s>a2). (2)

Moreover, we obtain

1(s+a)s=s-a(s-a2)s=1s-a2-a(s-a2)sea2t-ea2terfat=ea2t(1-erfat),

whence we have the other formula

{ea2terfcat}=1(a+s)s. (3)

0.1 An improper integral

One can utilise the formula (3) for evaluating the improper integral

0e-x2a2+x2𝑑x.

We have

e-tx21s+x2

(see the table of Laplace transforms (http://planetmath.org/TableOfLaplaceTransforms)).  Dividing this by a2+x2 and integrating from 0 to , we can continue as follows:

0e-tx2a2+x2𝑑x 0dx(a2+x2)(s+x2)=1s-a20(1a2+x2-1s+x2)𝑑x
=1s-a2/x=0(1aarctanxa-1sarctanxs)
=1s-a2π2(1a-1s)=π2a1(a+s)s
π2aea2terfcat

Consequently,

0e-tx2a2+x2𝑑x=π2aea2terfcat,

and especially

0e-x2a2+x2𝑑x=π2aea2erfca.
Title using convolutionPlanetmathPlanetmath to find Laplace transform
Canonical name UsingConvolutionToFindLaplaceTransform
Date of creation 2013-03-22 18:44:05
Last modified on 2013-03-22 18:44:05
Owner pahio (2872)
Last modified by pahio (2872)
Numerical id 12
Author pahio (2872)
Entry type Example
Classification msc 26A42
Classification msc 44A10
Related topic ErrorFunction
Related topic SubstitutionNotation
Related topic IntegrationOfLaplaceTransformWithRespectToParameter