value of the Riemann zeta function at
Here we present an application of Parseval’s equality to number
theory![]()
. Let denote the Riemann zeta function


![]()
. We will
compute the value
with the help of Fourier analysis.
Example:
Let be the “identity” function![]()
,
defined by
The Fourier series![]()
of this function has been computed in the entry
example of Fourier series.
Thus
Parseval’s theorem asserts that:
So we apply this to the function :
and
Hence by Parseval’s equality
and hence
| Title | value of the Riemann zeta function at |
|---|---|
| Canonical name | ValueOfTheRiemannZetaFunctionAtS2 |
| Date of creation | 2013-03-22 13:57:16 |
| Last modified on | 2013-03-22 13:57:16 |
| Owner | alozano (2414) |
| Last modified by | alozano (2414) |
| Numerical id | 15 |
| Author | alozano (2414) |
| Entry type | Theorem |
| Classification | msc 11M99 |
| Classification | msc 42A16 |
| Related topic | ExampleOfFourierSeries |
| Related topic | PersevalEquality |
| Related topic | ValuesOfTheRiemannZetaFunctionInTermsOfBernoulliNumbers |
| Related topic | ValueOfRiemannZetaFunctionAtS4 |
| Related topic | ValueOfDirichletEtaFunctionAtS2 |
| Related topic | APathologicalFunctionOfRiemann |
| Related topic | KummersAccelerationMethod |