value of the Riemann zeta function at
Here we present an application of Parseval’s equality to number theory. Let denote the Riemann zeta function. We will compute the value
with the help of Fourier analysis.
Example:
Let be the “identity” function, defined by
The Fourier series of this function has been computed in the entry example of Fourier series.
Thus
Parseval’s theorem asserts that:
So we apply this to the function :
and
Hence by Parseval’s equality
and hence
Title | value of the Riemann zeta function at |
---|---|
Canonical name | ValueOfTheRiemannZetaFunctionAtS2 |
Date of creation | 2013-03-22 13:57:16 |
Last modified on | 2013-03-22 13:57:16 |
Owner | alozano (2414) |
Last modified by | alozano (2414) |
Numerical id | 15 |
Author | alozano (2414) |
Entry type | Theorem |
Classification | msc 11M99 |
Classification | msc 42A16 |
Related topic | ExampleOfFourierSeries |
Related topic | PersevalEquality |
Related topic | ValuesOfTheRiemannZetaFunctionInTermsOfBernoulliNumbers |
Related topic | ValueOfRiemannZetaFunctionAtS4 |
Related topic | ValueOfDirichletEtaFunctionAtS2 |
Related topic | APathologicalFunctionOfRiemann |
Related topic | KummersAccelerationMethod |