von Neumann integer
A von Neumann is not an integer, but instead a construction of a natural number![]()
using some basic set notation. The von Neumann integers are defined inductively. The von Neumann integer zero is defined to be the empty set
![]()
, , and there are no smaller von Neumann integers.
The von Neumann integer is then the set of all von Neumann integers less than . The set of von Neumann integers is the set of all finite von Neumann ordinals (http://planetmath.org/VonNeumannOrdinal).
This form of construction from very basic notions of sets is applicable to various forms of set theory![]()
(for instance, Zermelo-Fraenkel set theory
![]()
). While this construction suffices to define the set of natural numbers, a little more work must be done to define the set of all integers (http://planetmath.org/Integer).
Examples
| Title | von Neumann integer |
|---|---|
| Canonical name | VonNeumannInteger |
| Date of creation | 2013-03-22 12:32:34 |
| Last modified on | 2013-03-22 12:32:34 |
| Owner | mathcam (2727) |
| Last modified by | mathcam (2727) |
| Numerical id | 7 |
| Author | mathcam (2727) |
| Entry type | Definition |
| Classification | msc 03E10 |
| Related topic | NaturalNumber |
| Related topic | VonNeumannOrdinal |