A.2.10 Identity types
The presentation here corresponds to the (unbased) path induction principle for identity types in Β§1.12 (http://planetmath.org/112identitytypes).
*[right=-form]
Ξ β’A : _i
Ξ β’a : A
Ξ β’b : A
Ξ β’ : _i
\inferrule*[right=-intro]
Ξ β’A : _i
Ξ β’a : A
Ξ β’ :
\inferrule*[right=-elim]
Ξ,x : A,y : A,p : β’C : _i
Ξ,z : A β’c : C[z,z,/x,y,p]
Ξ β’a : A
Ξ β’b : A
Ξ β’pβ :
Ξ β’ind_=_Aβ(x.y.p.C,z.c,a,b,pβ) : C[a,b,pβ/x,y,p]
\inferrule*[right=-comp]
Ξ,x : A,y : A,p : β’C : _i
Ξ,z : A β’c : C[z,z,/x,y,p]
Ξ β’a : A
Ξ β’ind_=_Aβ(x.y.p.C,z.c,a,a,) β‘c[a/z] : C[a,a,/x,y,p]
In , , , and are bound in , and is bound in
.
Title | A.2.10 Identity types |
---|---|
\metatable |