A.2.8 The unit type 1
*[right=π-form]
Ξ πΌππ
Ξ β’π : π° _i
\inferrule*[right=π-intro]
Ξ πΌππ
Ξ β’β : π
\inferrule*[right=π-elim]
Ξ,x : π β’C : π° _i
Ξ,y : π β’c : C[y/x]
Ξ β’a : π
Ξ β’ind_π(x.C,y.c,a) : C[a/x]
\inferrule*[right=π-comp]
Ξ,x : π β’C : π° _i
Ξ,y : π β’c : C[y/x]
Ξ β’ind_π(x.C,y.c,β) β‘c[β/y] : C[β/x]
In πππ½π, x is bound in C, and y is bound in c.
Notice that we donβt postulate a judgmental uniqueness principle for the unit
type; see Β§1.5 (http://planetmath.org/15producttypes) for a proof of the corresponding
propositional uniqueness statement.
Title | A.2.8 The unit type 1 |
---|---|
\metatable |