A.2.8 The unit type 1


{mathparpagebreakable}\inferrule

*[right=𝟏-form] Γ 𝖼𝗍𝗑 Ξ“ ⊒𝟏 : 𝒰 _i \inferrule*[right=𝟏-intro] Γ 𝖼𝗍𝗑 Ξ“ βŠ’β‹† : 𝟏 \inferrule*[right=𝟏-elim] Ξ“,x : 𝟏 ⊒C : 𝒰 _i
Ξ“,y : 𝟏 ⊒c : C[y/x]
Ξ“ ⊒a : 𝟏 Ξ“ ⊒ind_𝟏(x.C,y.c,a) : C[a/x] \inferrule*[right=𝟏-comp] Ξ“,x : 𝟏 ⊒C : 𝒰 _i
Ξ“,y : 𝟏 ⊒c : C[y/x] Ξ“ ⊒ind_𝟏(x.C,y.c,⋆) ≑c[⋆/y] : C[⋆/x] In π—‚π—‡π–½πŸ, x is bound in C, and y is bound in c.

Notice that we don’t postulateMathworldPlanetmath a judgmental uniqueness principle for the unit type; see Β§1.5 (http://planetmath.org/15producttypes) for a proof of the corresponding propositional uniqueness statement.

Title A.2.8 The unit type 1
\metatable