A.3.2 The circle
Here we give an example of a basic higher inductive type; others follow the same general scheme, albeit with elaborations.
Note that the rules below do not precisely follow the pattern of the ordinary inductive types in \autorefsec:syntax-more-formally: the rules refer to the notions of transport and functoriality of maps (Β§2.2 (http://planetmath.org/22functionsarefunctors)), and the second computation rule is a propositional, not judgmental, equality. These differences are discussed in Β§6.2 (http://planetmath.org/62inductionprinciplesanddependentpaths).
*[right=π1-form]
Ξ πΌππ
Ξ β’S^1 : π° _i
\inferrule*[right=π1-intro1]
Ξ πΌππ
Ξ β’π»πΊππΎ : S^1
\inferrule*[right=π1-intro2]
Ξ πΌππ
Ξ β’π
πππ : π»πΊππΎ=π1π»πΊππΎ
\inferrule*[right=π1-elim]
Ξ,x : S^1 β’C : π° _i
Ξ β’b : C[π»πΊππΎ/x]
Ξ β’β : b =^C_π
πππ b
Ξ β’p : S^1
Ξ β’ind_S^1(x.C,b,β,p) : C[p/x]
\inferrule*[right=π1-comp1]
Ξ,x : S^1 β’C : π° _i
Ξ β’b : C[π»πΊππΎ/x]
Ξ β’β : b =^C_π
πππ b
Ξ β’ind_S^1(x.C,b,β,π»πΊππΎ) β‘b : C[π»πΊππΎ/x]
\inferrule*[right=π1-comp2]
Ξ,x : S^1 β’C : π° _i
Ξ β’b : C[π»πΊππΎ/x]
Ξ β’β : b =^C_π
πππ b
Ξ β’S^1-loopcomp : πΊππ½(Ξ»y.πππ½π1(x.C,b,β,y))(π
πππ)=β
In πππ½π1, x is bound in C. The notation b=Cπ
πππb for dependent paths was introduced in Β§6.2 (http://planetmath.org/62inductionprinciplesanddependentpaths).
Title | A.3.2 The circle |
---|---|
\metatable |