Birkhoff Recurrence Theorem
Let be a continuous tranformation in a compact metric space . Then, there exists some point that is recurrent to , that is, there exists a sequence such that when .
Several proofs of this theorem are available. It may be obtained from topological arguments together with Zorn’s lemma. It is also a consequence of Krylov-Bogolyubov theorem, or existence of invariant probability measures theorem, which asserts that every continuous transformation in a compact metric space admits an invariant probability measure, and an application of Poincaré Recurrence theorem to that invariant probability measure yields Birkhoff Recurrence theorem.
There is also a generalization of Birkhoff recurrence theorem for multiple commuting transformations, known as Birkhoff Multiple Recurrence theorem.
Title | Birkhoff Recurrence Theorem |
---|---|
Canonical name | BirkhoffRecurrenceTheorem |
Date of creation | 2015-03-20 0:56:48 |
Last modified on | 2015-03-20 0:56:48 |
Owner | Filipe (28191) |
Last modified by | Filipe (28191) |
Numerical id | 2 |
Author | Filipe (28191) |
Entry type | Theorem |
Related topic | Poincaré Recurrence Theorem |