cases when minus one is a quadratic residue


Theorem.

Let p be an odd prime. Then -1 is a quadratic residueMathworldPlanetmath modulo p if and only if p1mod4.

Proof.

Let p be an odd prime. Notice that p is congruentMathworldPlanetmath to either 1 or 3 modulo 4. By the definition of the Legendre symbolDlmfMathworldPlanetmath, we need to verify that (-1p)=1 if and only if p1mod4. By Euler’s criterion

(-1p)(-1)(p-1)/2modp.

Finally, note that the integer p-12 is even if p1mod4 and odd if p3mod4. ∎

Title cases when minus one is a quadratic residue
Canonical name CasesWhenMinusOneIsAQuadraticResidue
Date of creation 2013-03-22 16:18:10
Last modified on 2013-03-22 16:18:10
Owner alozano (2414)
Last modified by alozano (2414)
Numerical id 6
Author alozano (2414)
Entry type Theorem
Classification msc 11A15
Related topic EulersCriterion
Related topic ValuesOfTheLegendreSymbol