Cauchy criterion for the existence of a limit of a function
Theorem 1.
Let be a set and a filter basis in . A function possesses limit on , iff for every there exists such that the oscillation of on is less than .
References
- 1 V., Zorich, Mathematical Analysis I, pp. 132ff, First Ed., Springer-Verlag, 2004.
| Title | Cauchy criterion for the existence of a limit of a function |
|---|---|
| Canonical name | CauchyCriterionForTheExistenceOfALimitOfAFunction |
| Date of creation | 2013-03-22 17:45:52 |
| Last modified on | 2013-03-22 17:45:52 |
| Owner | perucho (2192) |
| Last modified by | perucho (2192) |
| Numerical id | 6 |
| Author | perucho (2192) |
| Entry type | Theorem |
| Classification | msc 26A06 |
| Related topic | CauchyConditionForLimitOfFunction |