Conway’s constant
Conway’s constant gives the asymptotic rate of growth in the length between and in most look and say sequences. That is, given a function that gives us the number of digits of in base 10, then
For example, starting with and skipping ahead to , we observe
| 7 | 13112221 | 1.333333333… |
| 8 | 1113213211 | 1.25 |
| 9 | 31131211131221 | 1.4 |
| 10 | 13211311123113112211 | 1.428571428… |
| 11 | 11131221133112132113212221 | 1.3 |
| 12 | 3113112221232112111312211312113211 | 1.307692307… |
Conway’s constant is the largest zero of this degree 71 polynomial:
References
- 1 Steven R. Finch, Mathematical Constants. Cambridge: Cambridge University Press (2003): 453
| Title | Conway’s constant |
|---|---|
| Canonical name | ConwaysConstant |
| Date of creation | 2013-03-22 18:02:36 |
| Last modified on | 2013-03-22 18:02:36 |
| Owner | PrimeFan (13766) |
| Last modified by | PrimeFan (13766) |
| Numerical id | 4 |
| Author | PrimeFan (13766) |
| Entry type | Definition |
| Classification | msc 11A63 |