curvature of Nielsen’s spiral
Nielsen’s spiral is the plane curve defined in the
parametric form
x=acit,y=asit | (1) |
where a is a non-zero constant, “ci” and
“si” are the cosine integral (http://planetmath.org/sineintegral)
and the sine integral (http://planetmath.org/sineintegral)
and t is the parameter (http://planetmath.org/Parametre) (t>0).
We determine the curvature (http://planetmath.org/CurvaturePlaneCurve) κ of this curve using the expression
κ=x′y′′-y′x′′[(x′)2+(y′)2]3/2. | (2) |
The first derivatives of (1) are
x′=ddt(a∫t∞cosuu𝑑u)=acostt, | (3) |
y′=ddt(a∫t∞sinuu𝑑u)=asintt, | (4) |
and hence the second derivatives
x′′=-a⋅tsint+costt2,y′′=a⋅tcost-sintt2. |
Substituting the derivatives in (2) yields
κ=a2⋅(cost)(tcost-sint)+(sint)(tsint+cost)t⋅t2:(a2cos2t+a2sin2tt2)32, |
which is easily simplified to
κ=ta. | (5) |
The arc length (http://planetmath.org/ArcLength) of Nielsen’s spiral can also be obtained in a closed form
(http://planetmath.org/ClosedForm4); using (3) and (4) we get:
s=∫t1√x′2+y′2𝑑t=∫t1√a2cos2tt2+a2sin2tt2𝑑t=∫t1at𝑑t, |
i.e.
s=alnt. | (6) |
Note. The expressions for x′ and y′ allow us determine as well
dydx=y′x′=sintcost=tant, |
which says that the sense of the parameter t is the slope angle of the tangent line of the Nielsen’s spiral.
Title | curvature of Nielsen’s spiral |
Canonical name | CurvatureOfNielsensSpiral |
Date of creation | 2015-02-06 12:53:54 |
Last modified on | 2015-02-06 12:53:54 |
Owner | pahio (2872) |
Last modified by | pahio (2872) |
Numerical id | 22 |
Author | pahio (2872) |
Entry type | Example |
Classification | msc 53A04 |
Synonym | arc length of Nielsen’s spiral |
Related topic | CosineIntegral |
Related topic | SineIntegral |
Related topic | FamousCurvesInThePlane |
Related topic | DerivativeForParametricForm |
Defines | Nielsen’s spiral |