derivation of a definite integral formula using the method of exhaustion


The area under an arbitrary function f(x) that is piecewise continuous on [a,b] can be ”exhausted” with trianglesMathworldPlanetmath. The first triangle has vertices at (a,0) and (b,0), and intersects f(x) at

x=a+b-a2,

yielding the estimate

A1=12(b-a)f(a+b-a2)

The second approximation involves two triangles, each sharing two vertices with the original triangle, and intersecting f(x) at

x=a+b-a4

and

x=a+3(b-a)4,

adding the area:

A2=14(b-a){f(a+b-a4)-f(a+b-a2)+f(a+3(b-a)4)}

A third such approximation involves four more triangles, adding the area

A3=18(b-a){f(a+b-a8)-f(a+b-a4)+f(a+3(b-a)8)-f(a+b-a2)+f(a+5(b-a)8)-f(a+3(b-a)4)+f(a+7(b-a)8)}.

This procedure eventually leads to the formulaMathworldPlanetmathPlanetmath

abf(x)𝑑x=n=1An=(b-a)n=1m=12n-1(-1)m+12-nf(a+m(b-a)/2n)

References

  1. 1.

    http://arxiv.org/abs/math.CA/0011078http://arxiv.org/abs/math.CA/0011078.

  2. 2.

    Int. J. Math. Math. Sci. 31, 345-351, 2002.

Title derivation of a definite integral formula using the method of exhaustion
Canonical name DerivationOfADefiniteIntegralFormulaUsingTheMethodOfExhaustion
Date of creation 2013-03-22 14:56:35
Last modified on 2013-03-22 14:56:35
Owner ruffa (7723)
Last modified by ruffa (7723)
Numerical id 22
Author ruffa (7723)
Entry type Derivation
Classification msc 78A45
Classification msc 30B99
Classification msc 26B15