Derivation of Fourier Coefficients


Derivation of Fourier Coefficients Swapnil Sunil Jain December 28, 2006

Derivation of Fourier Coefficients

As you know, any periodic function f(t) can be written as a Fourier series like the following

f(t) = c0+n=1ancos(ωnt)+bnsin(ωnt) (1)

where ωn=nω0 and ω0=2πT

In the process to find an explicit expression for the coefficients c0,an,bn in terms of f(t), we write (1) in a slightly different way as the following

f(t)= c0+a1cos(ω1t)+a2cos(ω2t)++akcos(ωkt)+
+b1sin(ω1t)+b2sin(ω2t)++bksin(ωkt)+ (2)

where k is a positive integer.

In order to derive the coefficient c0, we take the integral of both sides of (2) over one period.

τf(t)𝑑t= τc0𝑑t+τa1cos(ω1t)𝑑t+τa2cos(ω2t)𝑑t++τakcos(ωkt)𝑑t+
+τb1sin(ω1t)𝑑t+τb2sin(ω2t)𝑑t++τbksin(ωkt)𝑑t+

where τ=[t0,t0+T]. After evaluating the above equation, all the integrals on the right side with a sine or a cosine term drop out (since the integral of a sine or cosine over one period is zero) and we get

τf(t)𝑑t= c0τ𝑑t
τf(t)𝑑t= c0(T)
c0= 1Tτf(t)𝑑t=1Tt0t0+Tf(t)𝑑t

Now, in order to find ak, we multiply both sides of (2) by cos(ωkt) and we arrive at

f(t)cos(ωkt)= c0cos(ωkt)+a1cos(ω1t)cos(ωkt)+a2cos(ω2t)cos(ωkt)++akcos2(ωkt)+
+b1sin(ω1t)cos(ωkt)+b2sin(ω2t)cos(ωkt)++bksin(ωkt)cos(ωkt)+

Then we take the integral of both sides of the above equation over one period and we get

τf(t)cos(ωkt)𝑑t= τc0cos(ωkt)𝑑t+τa1cos(ω1t)cos(ωkt)𝑑t+τa2cos(ω2t)cos(ωkt)𝑑t+
+τakcos2(ωkt)𝑑t++τb1sin(ω1t)cos(ωkt)𝑑t+τb2sin(ω2t)cos(ωkt)𝑑t+
+τbksin(ωkt)cos(ωkt)𝑑t+

By using orthogonality relationships or by literally evaluating the above integrals, we get the following

τf(t)cos(ωkt)𝑑t= τakcos2(ωkt)𝑑t
τf(t)cos(ωkt)𝑑t= ak(T2)
ak= 2Tτf(t)cos(ωkt)𝑑t=2Tt0t0+Tf(t)cos(ωkt)𝑑t

Now, the process of finding bk is similarMathworldPlanetmath. We multiply both sides of (2) by sin(ωkt) and we get

f(t)sin(ωkt)= c0cos(ωkt)+a1cos(ω1t)sin(ωkt)+a2cos(ω2t)sin(ωkt)++akcos(ωkt)sin(ωkt)+
+b1sin(ω1t)sin(ωkt)+b2sin(ω2t)sin(ωkt)++bksin2(ωkt)+

Then we take the integral of both sides of the above equation over one period and we arrive at

τf(t)sin(ωkt)𝑑t= τc0cos(ωkt)𝑑t+τa1cos(ω1t)cos(ωkt)𝑑t+τa2cos(ω2t)cos(ωkt)𝑑t+
+τakcos(ωkt)sin(ωkt)𝑑t++τb1sin(ω1t)cos(ωkt)𝑑t+τb2sin(ω2t)cos(ωkt)𝑑t+
+τbksin2(ωkt)𝑑t+

By using orthogonality relationships or by literally evaluating the above integrals, we get the following

τf(t)sin(ωkt)𝑑t= τbksin2(ωkt)𝑑t
τf(t)sin(ωkt)𝑑t= bk(T2)
bk= 2Tτf(t)sin(ωkt)𝑑t=2Tt0t0+Tf(t)sin(ωkt)𝑑t
Title Derivation of Fourier Coefficients
Canonical name DerivationOfFourierCoefficients1
Date of creation 2013-03-11 19:30:41
Last modified on 2013-03-11 19:30:41
Owner swapnizzle (13346)
Last modified by (0)
Numerical id 1
Author swapnizzle (0)
Entry type Definition