differential propositional calculus : appendix 1


Note. The following Tables are best viewed in the Page Image mode.

0.1 Table A1. Propositional Forms on Two Variables

Table A1 lists equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmath expressions for the Boolean functionsMathworldPlanetmath of two variables in a number of different notational systems.

Table A1. Propositional Forms on Two Variables
1 2 3 4 5 6
x= 1 1 0 0
y= 1 0 1 0
f0 f0000 0 0 0 0 () false 0
f1 f0001 0 0 0 1 (x)(y) neitherxnory ¬x¬y
f2 f0010 0 0 1 0 (x)y ywithoutx ¬xy
f3 f0011 0 0 1 1 (x) notx ¬x
f4 f0100 0 1 0 0 x(y) xwithouty x¬y
f5 f0101 0 1 0 1 (y) noty ¬y
f6 f0110 0 1 1 0 (x,y) xnotequaltoy xy
f7 f0111 0 1 1 1 (xy) notbothxandy ¬x¬y
f8 f1000 1 0 0 0 xy xandy xy
f9 f1001 1 0 0 1 ((x,y)) xequaltoy x=y
f10 f1010 1 0 1 0 y y y
f11 f1011 1 0 1 1 (x(y)) notxwithouty xy
f12 f1100 1 1 0 0 x x x
f13 f1101 1 1 0 1 ((x)y) notywithoutx xy
f14 f1110 1 1 1 0 ((x)(y)) xory xy
f15 f1111 1 1 1 1 (()) true 1

0.2 Table A2. Propositional Forms on Two Variables

Table A2 lists the sixteen Boolean functions of two variables in a different order, grouping them by structural similarity into seven natural classes.

Table A2. Propositional Forms on Two Variables
1 2 3 4 5 6
x= 1 1 0 0
y= 1 0 1 0
f0 f0000 0 0 0 0 () false 0
f1 f0001 0 0 0 1 (x)(y) neitherxnory ¬x¬y
f2 f0010 0 0 1 0 (x)y ywithoutx ¬xy
f4 f0100 0 1 0 0 x(y) xwithouty x¬y
f8 f1000 1 0 0 0 xy xandy xy
f3 f0011 0 0 1 1 (x) notx ¬x
f12 f1100 1 1 0 0 x x x
f6 f0110 0 1 1 0 (x,y) xnotequaltoy xy
f9 f1001 1 0 0 1 ((x,y)) xequaltoy x=y
f5 f0101 0 1 0 1 (y) noty ¬y
f10 f1010 1 0 1 0 y y y
f7 f0111 0 1 1 1 (xy) notbothxandy ¬x¬y
f11 f1011 1 0 1 1 (x(y)) notxwithouty xy
f13 f1101 1 1 0 1 ((x)y) notywithoutx xy
f14 f1110 1 1 1 0 ((x)(y)) xory xy
f15 f1111 1 1 1 1 (()) true 1

0.3 Table A3. Ef Expanded Over Differential Features {dx,dy}

Table A3. Ef Expanded Over Differential Features {dx,dy}
T11 T10 T01 T00
f Ef|dxdy Ef|dx(dy) Ef|(dx)dy Ef|(dx)(dy)
f0 () () () () ()
f1 (x)(y) xy x(y) (x)y (x)(y)
f2 (x)y x(y) xy (x)(y) (x)y
f4 x(y) (x)y (x)(y) xy x(y)
f8 xy (x)(y) (x)y x(y) xy
f3 (x) x x (x) (x)
f12 x (x) (x) x x
f6 (x,y) (x,y) ((x,y)) ((x,y)) (x,y)
f9 ((x,y)) ((x,y)) (x,y) (x,y) ((x,y))
f5 (y) y (y) y (y)
f10 y (y) y (y) y
f7 (xy) ((x)(y)) ((x)y) (x(y)) (xy)
f11 (x(y)) ((x)y) ((x)(y)) (xy) (x(y))
f13 ((x)y) (x(y)) (xy) ((x)(y)) ((x)y)
f14 ((x)(y)) (xy) (x(y)) ((x)y) ((x)(y))
f15 (()) (()) (()) (()) (())
Fixed PointPlanetmathPlanetmath (http://planetmath.org/FixedPoint) Total: 4 4 4 16

0.4 Table A4. Df Expanded Over Differential Features {dx,dy}

Table A4. Df Expanded Over Differential Features {dx,dy}
f Df|dxdy Df|dx(dy) Df|(dx)dy Df|(dx)(dy)
f0 () () () () ()
f1 (x)(y) ((x,y)) (y) (x) ()
f2 (x)y (x,y) y (x) ()
f4 x(y) (x,y) (y) x ()
f8 xy ((x,y)) y x ()
f3 (x) (()) (()) () ()
f12 x (()) (()) () ()
f6 (x,y) () (()) (()) ()
f9 ((x,y)) () (()) (()) ()
f5 (y) (()) () (()) ()
f10 y (()) () (()) ()
f7 (xy) ((x,y)) y x ()
f11 (x(y)) (x,y) (y) x ()
f13 ((x)y) (x,y) y (x) ()
f14 ((x)(y)) ((x,y)) (y) (x) ()
f15 (()) () () () ()

0.5 Table A5. Ef Expanded Over Ordinary Features {x,y}

Table A5. Ef Expanded Over Ordinary Features {x,y}
f Ef|xy Ef|x(y) Ef|(x)y Ef|(x)(y)
f0 () () () () ()
f1 (x)(y) dxdy dx(dy) (dx)dy (dx)(dy)
f2 (x)y dx(dy) dxdy (dx)(dy) (dx)dy
f4 x(y) (dx)dy (dx)(dy) dxdy dx(dy)
f8 xy (dx)(dy) (dx)dy dx(dy) dxdy
f3 (x) dx dx (dx) (dx)
f12 x (dx) (dx) dx dx
f6 (x,y) (dx,dy) ((dx,dy)) ((dx,dy)) (dx,dy)
f9 ((x,y)) ((dx,dy)) (dx,dy) (dx,dy) ((dx,dy))
f5 (y) dy (dy) dy (dy)
f10 y (dy) dy (dy) dy
f7 (xy) ((dx)(dy)) ((dx)dy) (dx(dy)) (dxdy)
f11 (x(y)) ((dx)dy) ((dx)(dy)) (dxdy) (dx(dy))
f13 ((x)y) (dx(dy)) (dxdy) ((dx)(dy)) ((dx)dy)
f14 ((x)(y)) (dxdy) (dx(dy)) ((dx)dy) ((dx)(dy))
f15 (()) (()) (()) (()) (())

0.6 Table A6. Df Expanded Over Ordinary Features {x,y}

Table A6. Df Expanded Over Ordinary Features {x,y}
f Df|xy Df|x(y) Df|(x)y Df|(x)(y)
f0 () () () () ()
f1 (x)(y) dxdy dx(dy) (dx)dy ((dx)(dy))
f2 (x)y dx(dy) dxdy ((dx)(dy)) (dx)dy
f4 x(y) (dx)dy ((dx)(dy)) dxdy dx(dy)
f8 xy ((dx)(dy)) (dx)dy dx(dy) dxdy
f3 (x) dx dx dx dx
f12 x dx dx dx dx
f6 (x,y) (dx,dy) (dx,dy) (dx,dy) (dx,dy)
f9 ((x,y)) (dx,dy) (dx,dy) (dx,dy) (dx,dy)
f5 (y) dy dy dy dy
f10 y dy dy dy dy
f7 (xy) ((dx)(dy)) (dx)dy dx(dy) dxdy
f11 (x(y)) (dx)dy ((dx)(dy)) dxdy dx(dy)
f13 ((x)y) dx(dy) dxdy ((dx)(dy)) (dx)dy
f14 ((x)(y)) dxdy dx(dy) (dx)dy ((dx)(dy))
f15 (()) () () () ()
Title differential propositional calculus : appendix 1
Canonical name DifferentialPropositionalCalculusAppendix1
Date of creation 2013-11-16 13:40:11
Last modified on 2013-11-16 13:40:11
Owner Jon Awbrey (15246)
Last modified by Jon Awbrey (15246)
Numerical id 20
Author Jon Awbrey (15246)
Entry type Application
Classification msc 53A40
Classification msc 39A12
Classification msc 34G99
Classification msc 03B44
Classification msc 03B42
Classification msc 03B05
Related topic DifferentialLogic
Related topic MinimalNegationOperator
Related topic PropositionalCalculus
Related topic ZerothOrderLogic