dual code


Let C be a linear code of block length n over the finite fieldMathworldPlanetmath 𝔽q. Then the set

CβŸ‚:={dβˆˆπ”½qn∣cβ‹…d=0⁒ for all ⁒c∈C}

is the dual code of C. Here, cβ‹…d denotes either the standard dot productMathworldPlanetmath or the Hermitian dot product.

This definition is reminiscent of orthogonal complementsMathworldPlanetmathPlanetmath of http://planetmath.org/node/5398finite dimensional vector spacesMathworldPlanetmath over the real or complex numbersMathworldPlanetmathPlanetmath. Indeed, CβŸ‚ is also a linear code and it is true that if k is the http://planetmath.org/node/5398dimensionPlanetmathPlanetmath of C, then the of CβŸ‚ is n-k. It is, however, not necessarily true that C∩CβŸ‚={0}. For example, if C is the binary code of block length 2 http://planetmath.org/node/806spanned by the codeword (1,1) then (1,1)β‹…(1,1)=0, that is, (1,1)∈CβŸ‚. In fact, C equals CβŸ‚ in this case. In general, if C=CβŸ‚, C is called self-dual. Furthermore C is called self-orthogonal if CβŠ†CβŸ‚.

Famous examples of self-dual codes are the extended binary Hamming code of block length 8 and the extended binary Golay code of block length 24.

Title dual code
Canonical name DualCode
Date of creation 2013-03-22 15:13:29
Last modified on 2013-03-22 15:13:29
Owner GrafZahl (9234)
Last modified by GrafZahl (9234)
Numerical id 6
Author GrafZahl (9234)
Entry type Definition
Classification msc 94B05
Related topic LinearCode
Related topic OrthogonalComplement
Defines self-dual
Defines self-orthogonal