example of a non-lattice homomorphism


Consider the Hasse diagram of the lattice of subgroups of the quaternion groupMathworldPlanetmathPlanetmath of order 8, Q8. [The use of Q8 is only for a concrete realization of the latticeMathworldPlanetmath.]

{xy}<5mm,0mm>:<0mm,5mm>::(0,3)+*Q8="Q8";(-2,2)+*i="i";(0,2)+*j="j";(2,2)+*k="k";(0,1)+*-1="-1";(0,0)+*1="1";"1";"-1"**@-;"-1";"i"**@-;"-1";"j"**@-;"-1";"k"**@-;"i";"Q8"**@-;"j";"Q8"**@-;"k";"Q8"**@-;

To establish an order-preserving map which is not a lattice isomorphismMathworldPlanetmath one can simply “skip” -1, which we display graphically as:

{xy}<5mm,0mm>:<0mm,5mm>::(-3,3)+*Q8="Q81";(-5,2)+*i="i1";(-3,2)+*j="j1";(-1,2)+*k="k1";(-3,1)+*-1="-11";(-3,0)+*1="11";(3,2.5)+*Q8="Q82";(1,1.5)+*i="i2";(3,1.5)+*j="j2";(5,1.5)+*k="k2";(3,0.5)+*-1="-12";(3,-0.5)+*1="12";"11";"-11"**@-;"-11";"i1"**@-;"-11";"j1"**@-;"-11";"k1"**@-;"i1";"Q81"**@-;"j1";"Q81"**@-;"k1";"Q81"**@-;"12";"-12"**@-;"-12";"i2"**@-;"-12";"j2"**@-;"-12";"k2"**@-;"i2";"Q82"**@-;"j2";"Q82"**@-;"k2";"Q82"**@-;"Q81";"Q82"**@..;"i1";"i2"**@..;"j1";"j2"**@..;"k1";"k2"**@..;"-11";"12"**@..;"11";"12"**@..;

Since containment is still preserved the map is order-preserving. However, the intersectionMathworldPlanetmathPlanetmath (meet) of i and j, which is -1, is not perserved under this map. Thus it is not a lattice homomorphism.

Title example of a non-lattice homomorphismMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath
Canonical name ExampleOfANonlatticeHomomorphism
Date of creation 2013-03-22 16:58:31
Last modified on 2013-03-22 16:58:31
Owner Algeboy (12884)
Last modified by Algeboy (12884)
Numerical id 8
Author Algeboy (12884)
Entry type Example
Classification msc 06B23