example of curvature (space curve)


Example space curves and calculating their curvaturesMathworldPlanetmathPlanetmath using the formula

κ(t)=𝐫(t)×𝐫′′(t)𝐫(t)3

1. 𝐫(t)=3ti^+t2j^-4t2k^

𝐫(t)=3i^+2tj^-8tk^

𝐫(t)=32+(2t)2+(-8t)2

𝐫(t)=9+4t2+16t2=9+20t2

the second derivative

𝐫′′(t)=2j^-8k^

𝐫(t)×𝐫′′(t)=|i^j^k^32t-8t02-8|=(-16t+16t)i^-(-24)j^+6k^

𝐫(t)×𝐫′′(t)=24j^+6k^

𝐫(t)×𝐫′′(t)=576+36=612=2153

𝐫(t)3=(9+20t2)3/2

κ(t)=2153(9+20t2)3/2

2. Calculate the curvature of the right circular helix as given in the plot below and defined as

𝐫(t)=costi^+sintj^+tk^

𝐫(t)=-sinti^+costj^+k^

𝐫(t)=sin2t+cos2t+12=2

𝐫′′(t)=-costi^-sintj^

𝐫(t)×𝐫′′(t)=|i^j^k^-sintcost1-cost-sint0|=sinti^-costj^+(sin2t+cos2t)k^

𝐫(t)×𝐫′′(t)=sinti^-costj^+k^

𝐫(t)×𝐫′′(t)=sin2t+cos2t+12=2

𝐫(t)3=23/2

κ(t)=223/2=12

Title example of curvature (space curve)
Canonical name ExampleOfCurvaturespaceCurve
Date of creation 2013-03-22 15:40:58
Last modified on 2013-03-22 15:40:58
Owner bloftin (6104)
Last modified by bloftin (6104)
Numerical id 8
Author bloftin (6104)
Entry type Example
Classification msc 53A04
Related topic PositionVector