example of differentiation under integral sign


DifferentiationMathworldPlanetmath with respect to a parameter under the integral sign may sometimes yield useful formulae.  One example is given here.

We know that the equation

∫01xm⁒𝑑x=1m+1

is valid for all  m>-1.  If one differentiates with respect to m under the integral sign (http://planetmath.org/DifferentiationUnderTheIntegralSign) in succession, one gets

∫01βˆ‚βˆ‚β‘m⁒em⁒ln⁑x⁒𝑑x=∫01em⁒ln⁑x⁒ln⁑x⁒d⁒x=∫01xm⁒ln⁑x⁒d⁒x=-1(m+1)2
∫01βˆ‚βˆ‚β‘m⁒xm⁒ln⁑x⁒d⁒x=∫01xm⁒(ln⁑x)2⁒𝑑x=+1β‹…2(m+1)3
∫01βˆ‚βˆ‚β‘m⁒xm⁒(ln⁑x)2⁒𝑑x=∫01xm⁒(ln⁑x)3⁒𝑑x=-1β‹…2β‹…3(m+1)4
β‹―

It’s evident that repeating the differentiation n times the final result is the

∫01xm(lnx)ndx=(-1)n⁒n!(m+1)n+1  (m>-1).
Title example of differentiation under integral signMathworldPlanetmath
Canonical name ExampleOfDifferentiationUnderIntegralSign
Date of creation 2013-03-22 17:01:56
Last modified on 2013-03-22 17:01:56
Owner pahio (2872)
Last modified by pahio (2872)
Numerical id 4
Author pahio (2872)
Entry type Example
Classification msc 26A24
Classification msc 26B15