example of infinitesimal hyperreal number
The hyperreal number is infinitesimal.
Proof - Let be the nonprincipal ultrafilter in the entry (http://planetmath.org/Hyperreal).
so .
Given any positive we have that is finite, so and therefore .
Thus for every positive real number , and so is infinitesimal.
| Title | example of infinitesimal hyperreal number |
|---|---|
| Canonical name | ExampleOfInfinitesimalHyperrealNumber |
| Date of creation | 2013-03-22 17:25:57 |
| Last modified on | 2013-03-22 17:25:57 |
| Owner | asteroid (17536) |
| Last modified by | asteroid (17536) |
| Numerical id | 4 |
| Author | asteroid (17536) |
| Entry type | Example |
| Classification | msc 26E35 |