example of integration with respect to surface area of a paraboloid


In this example we examine the paraboloid given by the equation z=x2+3y2. Putting g(x,y)=x2+3y2, we have

1+(gx)2+(gy)2=1+(2x)2+(6y)2=1+4x2+36y2

and hence

Sf(x,y)d2A=f(x,y)1+4x2+36y2𝑑x𝑑y.
  • http://planetmath.org/node/6660main entry

  • http://planetmath.org/node/6669previous example

  • http://planetmath.org/node/6673next example

Title example of integration with respect to surface areaMathworldPlanetmath of a paraboloid
Canonical name ExampleOfIntegrationWithRespectToSurfaceAreaOfAParaboloid
Date of creation 2013-03-22 14:58:20
Last modified on 2013-03-22 14:58:20
Owner yark (2760)
Last modified by yark (2760)
Numerical id 15
Author yark (2760)
Entry type Example
Classification msc 28A75