example of telescoping sum
Some trigonometric sums, as and , may be telescoped if the terms are first edited by a suitable goniometric formula (http://planetmath.org/GoniometricFormulae) (‘‘product formula’’). E.g. we may write:
The product formula alters this to
or
After cancelling the opposite numbers we obtain the formula
(1) |
The corresponding formula
(2) |
is derived analogously.
Note. The formulae (1) and (2) are gotten also by adding the left side of the former and times the left side of the latter and then applying de Moivre identity.
References
- 1 Л. Д. Кудрявцев: Математический анализ. II том. Издательство ‘‘Высшая школа’’. Москва (1970).
Title | example of telescoping sum |
---|---|
Canonical name | ExampleOfTelescopingSum |
Date of creation | 2013-03-22 17:27:21 |
Last modified on | 2013-03-22 17:27:21 |
Owner | pahio (2872) |
Last modified by | pahio (2872) |
Numerical id | 11 |
Author | pahio (2872) |
Entry type | Example |
Classification | msc 40A05 |
Related topic | GoniometricFormulae |
Related topic | ExampleOfSummationByParts |
Related topic | DirchletKernel |