extracting every term of a series
Roots of unity![]()
can be used to extract every term of a series. This method is due to Simpson [1759].
Theorem. Let be a primitive root of unity. If and , then
Proof. This is a consequence of the fact that for .
Consider the term involving on the right-hand side. It is
If , the sum is zero. So the term involving is zero unless , in which case it is since each element of the sum is .
Note that this method is a generalization of the commonly known trick for extracting alternate terms of a series:
produces the odd terms of .
| Title | extracting every term of a series |
|---|---|
| Canonical name | ExtractingEveryNmathrmthTermOfASeries |
| Date of creation | 2013-03-22 16:23:34 |
| Last modified on | 2013-03-22 16:23:34 |
| Owner | rm50 (10146) |
| Last modified by | rm50 (10146) |
| Numerical id | 10 |
| Author | rm50 (10146) |
| Entry type | Theorem |
| Classification | msc 11-00 |