Gradient and Divergence in Orthonormal Curvilinear Coordinates


Gradient and Divergence in Orthonormal Curvilinear Coordinates Swapnil Sunil Jain Aug 7, 2006

Gradient and Divergence in Orthonormal Curvilinear Coordinates

Gradient in Curvilinear Coordinates

In rectangular coordinates (where f=f(x,y,z)), an infinitesimalMathworldPlanetmathPlanetmath length vector dl is given by

dl=dxx^+dyy^+dzz^

the gradient is given by

=xx^+yy^+zz^

and the differentialMathworldPlanetmath change in the output is given by

df=fdl=fxdx+fydy+fzdz

Similarly in orthonormal curvilinear coordinates ( where f=f(q1,q2,q3)), the infinitesimal length vector is given by11See my article Unit Vectors in Curvilinear Coordinates for an insight into this expression.

dl=h1dq1q^1+h2dq2q^2+h3dq3q^3

where

hi=k(xkqi)2 and q^i=1hi(xkqi) for i1,2,3

So if

=αq1q^1+βq2q^2+γq3q^3

then since we know that

df=fq1dq1+fq2dq2+fq3dq3

and

df=Fdl=αh1fq1dq1+βh2fq2dq2+γh3fq3dq3

this implies that

α=1hi;β=1h2;γ=1h3

Hence,

= 1h1q1q^1+1h2q2q^2+1h3q3q^3
= i1hiqiq^i

Divergence in Curvilinear Coordinates

In the previous sectionMathworldPlanetmath we concluded that in curvilinear coordinates, the gradient operator is given by

=i1hiqiq^i

Then for F=F1q^1+F2q^2+F3q^3, the divergence of F is given by

F=(i1hiqiq^i)F

which is not equal to

(i1hiqiq^i)Fi1hiFiqi

as one would think! The real expression can be derived the following way,

=i[(1hiqiq^i)F]
=i[(1hiq^i)(Fqi)]
=i[(1hiq^i)(qi(jFjq^j))]
=i[(1hiq^i)(jqi(Fjq^j))]
=i[(1hiq^i)(jq^jFjqi+Fjq^jqi)]
=i[(1hiq^i)(jq^jFjqi+jFjq^jqi)]
=i[(1hiq^i)jq^jFjqi+(1hiq^i)jFjq^jqi]
=i[(1hiq^i)jq^jFjqi]call it A+i[(1hiq^i)jFjq^jqi]call it B
A = i[(1hiq^i)jq^jFjqi]
= i[1hij(q^iq^j)δijFjqi]
= i1hiFiqi
B = i[(1hiq^i)jFjq^jqi]

Using the following equality22The proof of this identity is left as an exercise for the reader.

q^jqi=q^ihjhiqj  ij

we can write B as

B = i[(1hiq^i)jFj(q^i1hjhiqj)]  ij
= i[1hijFj(q^iq^i)11hjhiqj]  ij
= i[1hijFj1hjhiqj]  ij
= ijFjhjhihiqj
= i1F1h1hihiq1+i2F2h2hihiq2+i3F3h3hihiq3
F = A+B
= i1hiFiqi+i1F1h1hihiq1+i2F2h2hihiq2+i3F3h3hihiq3
= [1h1F1q1+1h2F2q2+1h3F3q3]
+[F1h1h2h2q1+F1h1h3h3q1]
+[F2h2h1h1q2+F2h2h3h3q2]
+[F3h3h1h1q3+F3h3h2h2q3]

Collecting similarMathworldPlanetmathPlanetmath terms together we get,

F = [1h1F1q1+F1h1h2h2q1+F1h1h3h3q1]
+[1h2F2q2+F2h2h1h1q2+F2h2h3h3q2]
+[1h3F3q3+F3h3h1h1q3+F3h3h2h2q3]

If we define ΩΠihi, we can further write the above expression as

F = [h2h3ΩF1q1+F1h3Ωh2q1+F1h2Ωh3q1]
+[h1h3ΩF2q2+F2h3Ωh1q2+h1F2Ωh3q2]
+[h1h2ΩF3q3+h2F3Ωh1q3+h1F3Ωh2q3]
= 1Ω([F1q1h2h3+F1h3h2q1+F1h2h3q1]
+[h1F2q2h3+h1q2F2h3+h1F2h3q2]
+[h1h2F3q3+h1q3h2F3+h1h2q3F3])
= 1Ω(q1(F1h2h3)+q2(h1F2h3)+q3(h1h2F3))

Hence,

F = 1Ωiqi(ΩhiFi) where Ω=Πihi
Title Gradient and Divergence in Orthonormal Curvilinear Coordinates
Canonical name GradientAndDivergenceInOrthonormalCurvilinearCoordinates1
Date of creation 2013-03-11 19:26:23
Last modified on 2013-03-11 19:26:23
Owner swapnizzle (13346)
Last modified by (0)
Numerical id 1
Author swapnizzle (0)
Entry type Definition