Holmgren uniqueness theorem


Given a system of linear partial differential equationsMathworldPlanetmath with analytic coefficients aji1,,im and bi

j,i1,,imaji1,,im(x1,,xm)i1++imujx1i1xmim=bi(x1,,xm)

and analytic Cauchy data specified along a noncharacteristic analytic surface, there exists a neighborhood of the surface such that every smooth solution of the system defined in that neighborhood is analytic.

This theorem stengthens the Cauchy-Kowalewski theorem. While the latter theorem asserts that a unique analytic solution exists, it still allows the possibility that there might exist non-analytic solutions. Holmgren’s theorem asserts that this is not the case for linear systems.

It is often possible to determine the neighborhood in which Holmgren’s theorem holds explicitly. For instance, for many hyperbolic equations, one can show that this neighborhood can be taken to be the entire domain of dependence of the surface along which the boundary values were specified.

Title Holmgren uniqueness theorem
Canonical name HolmgrenUniquenessTheorem
Date of creation 2013-03-22 14:37:24
Last modified on 2013-03-22 14:37:24
Owner rspuzio (6075)
Last modified by rspuzio (6075)
Numerical id 11
Author rspuzio (6075)
Entry type Theorem
Classification msc 35A10