Hopfian module
A left (right) module over a ring is Hopfian if every surjective -endomorphism of is an automorphism. Dually, a left (right) -module is cohopfian if every injective -endomorphism of is an automorphism.
References
- 1 T. Y. Lam, Lectures on Modules and Rings, Springer-Verlag, New York (1999).
Title | Hopfian module |
---|---|
Canonical name | HopfianModule |
Date of creation | 2013-03-22 14:20:21 |
Last modified on | 2013-03-22 14:20:21 |
Owner | CWoo (3771) |
Last modified by | CWoo (3771) |
Numerical id | 9 |
Author | CWoo (3771) |
Entry type | Definition |
Classification | msc 16D99 |
Related topic | HopfianGroup |
Defines | cohopfian module |