Mascheroni’s constant can be expressed by the following integrals:

$\gamma $ 
$=$ 
${\displaystyle {\int}_{0}^{1}}\mathrm{log}(\mathrm{log}x)\mathit{d}x$ 


$\gamma $ 
$=$ 
${\displaystyle {\int}_{0}^{\mathrm{\infty}}}{e}^{x}\mathrm{log}xdx$ 


$\gamma $ 
$=$ 
${\int}_{0}^{\mathrm{\infty}}}\left({\displaystyle \frac{1}{{e}^{t}1}}{\displaystyle \frac{1}{t{e}^{t}}}\right)\mathit{d}t$ 


$\gamma $ 
$=$ 
${\int}_{0}^{\mathrm{\infty}}}\left({\displaystyle \frac{1}{t}}{\displaystyle \frac{1}{1+t}}{\displaystyle \frac{1}{t{e}^{t}}}\right)\mathit{d}t$ 
