isomorphism of the group PSL_2(C) with the group of Möbius transformations


We identify the group G of Möbius transformationsPlanetmathPlanetmath with the projective special linear groupMathworldPlanetmath PSL2(). The isomorphismMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath Ψ (of topological groups) is given by Ψ:[(abcd)]az+bcz+d. (Here, the notation [M] means the equivalence classMathworldPlanetmathPlanetmath [M]={Mtt})

This mapping is:

Well-defined:

If [(abcd)]=[(abcd)] then (a,b,c,d)=t(a,b,c,d) for some t, so zaz+bcz+d is the same transformation as zaz+bcz+d.

A homomorphismMathworldPlanetmathPlanetmathPlanetmath:

Calculating the composition

az+bcz+d|z=ew+fgw+h=aew+fgw+h+bcew+fgw+h+d=(ae+bg)w+(af+bh)(ce+dg)w+(cf+dh)

we see that Ψ([(abcd)])Ψ([(efgh)])=Ψ([(abcd)][(efgh)]).

A monomorphismMathworldPlanetmathPlanetmathPlanetmath:

If Ψ([(abcd)])=Ψ([(abcd)]), then it follows that (a,b,c,d)=t(a,b,c,d), so that [(abcd)]=[(abcd)].

An epimorphismMathworldPlanetmath:

Any Möbius transformation zaz+bcz+d is the image Ψ([(abcd)]).

Title isomorphism of the group PSL_2(C) with the group of Möbius transformations
Canonical name IsomorphismOfTheGroupPSL2CWithTheGroupOfMobiusTransformations
Date of creation 2013-03-22 12:43:30
Last modified on 2013-03-22 12:43:30
Owner rspuzio (6075)
Last modified by rspuzio (6075)
Numerical id 9
Author rspuzio (6075)
Entry type Result
Classification msc 57S25