Jacobi’s identity for ϑ functions


Jacobi’s identities describe how theta functionsDlmfMathworld transform under replacing the period with the negative of its reciprocal. Together with the quasiperiodicity relations, they describe the transformations of theta functions under the modular group.

θ1(z-1/τ)=-i(-iτ)1/2eiτz2πθ1(τzτ)
θ2(z-1/τ)=(-iτ)1/2eiτz2πθ4(τzτ)
θ3(z-1/τ)=(-iτ)1/2eiτz2πθ3(τzτ)
θ4(z-1/τ)=(-iτ)1/2eiτz2πθ2(τzτ)
Title Jacobi’s identity for ϑ functionsMathworldPlanetmath
Canonical name JacobisIdentityForvarthetaFunctions
Date of creation 2013-03-22 14:46:45
Last modified on 2013-03-22 14:46:45
Owner rspuzio (6075)
Last modified by rspuzio (6075)
Numerical id 5
Author rspuzio (6075)
Entry type Theorem
Classification msc 33E05