Kolmogorov’s strong law of large numbers
Let be a sequence of independent random variables, with finite expectations. The strong law of large numbers holds if one of the following conditions is satisfied:
-
1.
The random variables are identically distributed;
-
2.
For each , the variance of is finite, and
Title | Kolmogorov’s strong law of large numbers |
---|---|
Canonical name | KolmogorovsStrongLawOfLargeNumbers |
Date of creation | 2013-03-22 13:13:12 |
Last modified on | 2013-03-22 13:13:12 |
Owner | Koro (127) |
Last modified by | Koro (127) |
Numerical id | 7 |
Author | Koro (127) |
Entry type | Theorem |
Classification | msc 60F15 |
Synonym | Kolmogorov’s criterion |
Related topic | MartingaleProofOfKolmogorovsStrongLawForSquareIntegrableVariables |
Related topic | ProofOfKolmogorovsStrongLawForIIDRandomVariables |