Laplace integrals


The improper integrals

-acosxx2+a2𝑑xand-xsinxx2+a2𝑑x,

where a is a positive , are called Laplace integrals.  Both of them have the same value πe-a.

The evaluation of the Laplace integrals can be performed by first determining the integrals

-eixx-ia𝑑xand-eixx+ia𝑑x

where one integrates along the real axisMathworldPlanetmath.  Therefore one has to determine the integrals

eizz-ia𝑑zandeizz+ia𝑑z

around the perimeter of the half-disk with the arc in the upper half-plane, centered in the origin and with the diameter  (-R,+R).  The residue theoremMathworldPlanetmath yields the values

eizz-ia𝑑z= 2iπe-aandeizz+ia𝑑z= 0.

As in the entry example of using residue theorem, the parts of these contour integrals along the half-circle tend to zero when  R.  Consequently,

-eixx-ia𝑑x= 2iπe-aand-eixx+ia𝑑x= 0.

These equations imply by adding and subtracting and then taking the real (http://planetmath.org/RealPart) and the imaginary partsDlmfMathworld, the

-acosxx2+a2𝑑x=-xsinxx2+a2𝑑x=πe-a.

References

  • 1 R. Nevanlinna & V. Paatero: Funktioteoria.  Kustannusosakeyhtiö Otava. Helsinki (1963).
Title Laplace integrals
Canonical name LaplaceIntegrals
Date of creation 2013-03-22 18:43:17
Last modified on 2013-03-22 18:43:17
Owner pahio (2872)
Last modified by pahio (2872)
Numerical id 5
Author pahio (2872)
Entry type Definition
Classification msc 40A10