necessary and sufficient conditions for a normed vector space to be a Banach space


Theorem 1 - Let (X,) be a normed vector spacePlanetmathPlanetmath. X is a Banach spaceMathworldPlanetmath if and only if every absolutely convergent series in X is convergent, i.e., whenever nxn<, nxn converges in X.

Theorem 2 - Let X,Y be normed vector spaces, X0. Let B(X,Y) be the space of bounded operatorsMathworldPlanetmathPlanetmath XY. Then Y is a Banach space if and only if B(X,Y) is a Banach space.

Title necessary and sufficient conditions for a normed vector space to be a Banach space
Canonical name NecessaryAndSufficientConditionsForANormedVectorSpaceToBeABanachSpace
Date of creation 2013-03-22 17:23:04
Last modified on 2013-03-22 17:23:04
Owner asteroid (17536)
Last modified by asteroid (17536)
Numerical id 6
Author asteroid (17536)
Entry type Theorem
Classification msc 46B99