Fork me on GitHub
Math for the people, by the people.

User login

addition and subtraction formulas for hyperbolic functions


The addition formulas for hyperbolic sine, hyperbolic cosine, and hyperbolic tangent will be achieved via brute \PMlinkescapetext{force}.

\sinh(x+y) & =\frac{e^{x+y}-e^{-(x+y)}}{2} \\
& =\frac{e^xe^y-e^xe^{-y}+e^xe^{-y}-e^{-x}e^{-y}}{2} \\
& =e^x\left(\frac{e^y-e^{-y}}{2}\right)+e^{-y}\left(\frac{e^x-e^{-x}}{2}\right) \\
& =(\cosh x+\sinh x)\sinh y+(\cosh y-\sinh y)\sinh x \\
& =\cosh x\sinh y+\sinh x\sinh y+\sinh x\cosh y-\sinh x\sinh y \\
& =\sinh x\cosh y+\cosh x\sinh y

\cosh(x+y) & =\frac{e^{x+y}+e^{-(x+y)}}{2} \\
& =\frac{e^xe^y-e^xe^{-y}+e^xe^{-y}+e^{-x}e^{-y}}{2} \\
& =e^x\left(\frac{e^y-e^{-y}}{2}\right)+e^{-y}\left(\frac{e^x+e^{-x}}{2}\right) \\
& =(\cosh x+\sinh x)\sinh y+(\cosh y-\sinh y)\cosh x \\
& =\cosh x\sinh y+\sinh x\sinh y+\cosh x\cosh y-\cosh x\sinh y \\
& =\cosh x\cosh y+\sinh x\sinh y

\tanh(x+y) & =\frac{\sinh(x+y)}{\cosh(x+y)} \\
& =\frac{\sinh x\cosh y+\cosh x\sinh y}{\cosh x\cosh y+\sinh x\sinh y} \\
& =\frac{\ds\frac{\sinh x}{\cosh x} \cdot \frac{\cosh y}{\cosh y}+\frac{\cosh x}{\cosh x} \cdot \frac{\sinh y}{\cosh y}}
        {\ds\frac{\cosh x}{\cosh x} \cdot \frac{\cosh y}{\cosh y}+\frac{\sinh x}{\cosh x} \cdot \frac{\sinh y}{\cosh y}} \\
& =\frac{\tanh x+\tanh y}{1+\tanh x\tanh y}

Note that $\sinh$ and $\tanh$ are odd functions and $\cosh$ is an even function, \PMlinkname{i.e.}{Ie} $\sinh(-t)=-\sinh t$, $\tanh(-t)=-\tanh t$, and $\cosh(-t)=\cosh t$.  These facts enable us to obtain the subtraction formulas.

\sinh(x-y)=\sinh(x+(-y))=\sinh x\cosh(-y)+\cosh x\sinh(-y)=\sinh x\cosh y-\cosh x\sinh y

\cosh(x-y)=\cosh(x+(-y))=\cosh x\cosh(-y)+\sinh x\sinh(-y)=\cosh x\cosh y-\sinh x\sinh y

\tanh(x-y)=\tanh(x+(-y))=\frac{\tanh x+\tanh(-y)}{1+\tanh x\tanh(-y)}=\frac{\tanh x-\tanh y}{1-\tanh x\tanh y}