prime ideal decomposition in quadratic extensions of ℚ
Let K be a quadratic number field, i.e. K=ℚ(√d) for
some square-free integer d. The discriminant of the extension is
DK/ℚ={d, if d≡1mod 4,4d, if d≡2,3mod 4. |
Let 𝒪K denote the ring of integers of K. We have:
𝒪K≅{ℤ⊕1+√d2ℤ, if d≡1mod 4,ℤ⊕√dℤ, if d≡2,3mod 4. |
Prime ideals of ℤ decompose as follows in 𝒪K:
Theorem 1.
Let p∈Z be a prime.
-
1.
If p∣d (divides), then p𝒪K=(p,√d)2;
-
2.
If d is odd, then
2𝒪K={(2,1+√d)2, if d≡3mod 4,(2,1+√d2)(2,1-√d2), if d≡1mod 8,𝑝𝑟𝑖𝑚𝑒, if d≡5mod 8. -
3.
If p≠2, p does not divide d, then
p𝒪K={(p,n+√d)(p,n-√d), if d≡n2modp,𝑝𝑟𝑖𝑚𝑒, if d is not a square modp.
References
- 1 Daniel A.Marcus, Number Fields. Springer, New York.
Title | prime ideal decomposition in quadratic extensions of ℚ |
---|---|
Canonical name | PrimeIdealDecompositionInQuadraticExtensionsOfmathbbQ |
Date of creation | 2013-03-22 13:53:46 |
Last modified on | 2013-03-22 13:53:46 |
Owner | alozano (2414) |
Last modified by | alozano (2414) |
Numerical id | 7 |
Author | alozano (2414) |
Entry type | Theorem |
Classification | msc 11R11 |
Related topic | CalculatingTheSplittingOfPrimes |
Related topic | ExamplesOfPrimeIdealDecompositionInNumberFields |
Related topic | PrimeIdealDecompositionInCyclotomicExtensionsOfMathbbQ |
Related topic | NumberField |
Related topic | SplittingAndRamificationInNumberFieldsAndGaloisExtensions |