proof of Gronwall’s lemma
The inequality
ϕ(t)≤K+L∫tt0ψ(s)ϕ(s)𝑑s | (1) |
is equivalent to
ϕ(t)K+L∫tt0ψ(s)ϕ(s)𝑑s≤1 |
Multiply by Lψ(t) and integrate, giving
∫tt0Lψ(s)ϕ(s)dsK+L∫st0ψ(τ)ϕ(τ)𝑑τ≤L∫tt0ψ(s)𝑑s |
Thus
ln(K+L∫tt0ψ(s)ϕ(s)𝑑s)-lnK≤L∫tt0ψ(s)𝑑s |
and finally
K+L∫tt0ψ(s)ϕ(s)𝑑s≤Kexp(L∫tt0ψ(s)𝑑s) |
Using (1) in the left hand side of this inequality gives the result.
Title | proof of Gronwall’s lemma |
---|---|
Canonical name | ProofOfGronwallsLemma |
Date of creation | 2013-03-22 13:22:23 |
Last modified on | 2013-03-22 13:22:23 |
Owner | jarino (552) |
Last modified by | jarino (552) |
Numerical id | 5 |
Author | jarino (552) |
Entry type | Proof |
Classification | msc 26D10 |