proof of Mollweide’s equations
We transform the equation
(a+b)sinγ2=ccos(α-β2) |
to
acos(α2+β2)+bcos(α2+β2)=ccosα2cosβ2+csinα2sinβ2, |
using the fact that γ=π-α-β. The left hand side can be further expanded, so that we get:
a(cosα2cosβ2-sinα2sinβ2)+b(cosα2cosβ2-sinα2sinβ2)=ccosα2cosβ2+csinα2sinβ2. |
Collecting terms we get:
(a+b-c)cosα2cosβ2-(a+b+c)sinα2sinβ2=0. |
Using s:= and using the equations
we get:
which is obviously true. So we can prove the first equation by going backwards. The second equation can be proved in quite the same way.
Title | proof of Mollweide’s equations |
---|---|
Canonical name | ProofOfMollweidesEquations |
Date of creation | 2013-03-22 12:50:10 |
Last modified on | 2013-03-22 12:50:10 |
Owner | mathwizard (128) |
Last modified by | mathwizard (128) |
Numerical id | 5 |
Author | mathwizard (128) |
Entry type | Proof |
Classification | msc 51-00 |