proof to Cauchy-Riemann equations (polar coordinates)
If f(z) is differentialble at z0 then the following limit
f′(z0) | = | limξ→0f(z0+ξ)-f(z0)ξ |
will remain the same approaching from any direction. First we fix θ as θ0 then we take the limit along the ray where the argument is equal to θ0. Then
f′(z0) | = | limh→0f(r0eiθ0+heiθ0)-f(r0eiθ0)heiθ0 | ||
= | limh→0f((r0+h)eiθ0)-f(r0eiθ0)heiθ0 | |||
= | limh→0u(r0+h,θ0)+iv(r0+h,θ0)-u(r0,θ0)-iv(r0,θ0)heiθ0 | |||
= | 1eiθ0[limh→0u(r0+h,θ0)-u(r0,θ0)h+ilimh→0v(r0+h,θ0)-v(r0,θ0)h] | |||
= | 1eiθ0[∂u∂r(r0,θ0)+i∂v∂r(r0,θ0)] |
Similarly, if we take the limit along the circle with fixed r equals r0. Then
f′(z0) | = | limh→0f(r0eiθ0+r0ei(θ0+h))-f(r0eiθ0)r0eiθ0(eih-1) | ||
= | limh→0f(r0ei(θ0+h))-f(r0eiθ0)heiθ0 | |||
= | limh→0u(r0,θ0+h)+iv(r0,θ0+h)-u(r0,θ0)-iv(r0,θ0)heiθ0 | |||
= | 1r0eiθ0[limh→0u(r0+h,θ0)-u(r0,θ0)h⋅heih-1+ilimh→0v(r0+h,θ0)-v(r0,θ0)h⋅heih-1] | |||
= | 1r0eiθ0[limh→0u(r0+h,θ0)-u(r0,θ0)h⋅limh→0heih-1+ilimh→0v(r0+h,θ0)-v(r0,θ0)h⋅limh→0heih-1] | |||
= | 1r0eiθ0[∂u∂θ(r0,θ0)1i+∂v∂θ(r0,θ0)] | |||
= | 1r0eiθ0[∂v∂θ(r0,θ0)-i∂u∂θ(r0,θ0)] |
Note: We use l’Hôpital’s rule to obtain the following result used above limh→0heih-1=1i.
Now, since the limit is the same along the circle and the ray then they are equal:
1eiθ0[∂u∂r(r0,θ0)+i∂v∂r(r0,θ0)] | = | 1r0eiθ0[∂v∂θ(r0,θ0)-i∂u∂θ(r0,θ0)] | ||
[∂u∂r(r0,θ0)+i∂v∂r(r0,θ0)] | = | 1r0[∂v∂θ(r0,θ0)-i∂u∂θ(r0,θ0)] |
which implies that
∂u∂r | = | 1r∂v∂θ | ||
∂v∂r | = | -1r∂u∂θ |
QED
Title | proof to Cauchy-Riemann equations![]() ![]() |
---|---|
Canonical name | ProofToCauchyRiemannEquationspolarCoordinates |
Date of creation | 2013-03-22 14:06:13 |
Last modified on | 2013-03-22 14:06:13 |
Owner | Daume (40) |
Last modified by | Daume (40) |
Numerical id | 5 |
Author | Daume (40) |
Entry type | Proof |
Classification | msc 30E99 |