## You are here

Homeroot

## Primary tabs

# root

Let $f(x)\colon\mathbbmss{R}\rightarrow\mathbbmss{R}$ be a function in a real variable $x$. Then, a *root* of $f$ is a real number $a$ that $f(a)=0$.

Example. If $f(x)=x^{2}-4$, then $x=2$ is a root, since $f(2)=2^{2}-4=0$.

Graphically, a root of $f$ is a value where the graph of the function intersects the $x$-axis.

Of course the definition can be generalized to functions on other sets. In particular, neither the domain nor the codomain need be the set of real numbers. All that is required is that the codomain have a well-defined $0$ element. A root of the function will then be an element of the domain belonging to the preimage of the $0$.

Note that, for example, the function $f\colon\mathbbmss{R}\to\mathbbmss{R}$ given by $f(x)=x^{2}+1$ has no roots, but the function $f\colon\mathbbmss{C}\to\mathbbmss{C}$ given by $f(x)=x^{2}+1$ has $i$ as a root.

In the special case of polynomials, there are general formulas for finding roots of polynomials with degree up to 4: the quadratic formula, the cubic formula and the quartic formula.

If we have a root $a$ for a polynomial $f(x)$, we divide $f(x)$ by $x-a$ (either by polynomial long division or synthetic division) and we are left with a polynomial with smaller degrees whose roots are the other roots of $f$. We can use that result together with the rational root theorem to find a rational root if exists, and then get a polynomial with smaller degree which possibly we can find easily the other roots.

Considering the general case of functions $y=f(x)$ (not necessarily polynomials) there are several numerical methods (like Newton’s method) to approximate roots. This could be handy too for polynomials whose roots are not rational numbers.

## Mathematics Subject Classification

12D10*no label found*

- Forums
- Planetary Bugs
- HS/Secondary
- University/Tertiary
- Graduate/Advanced
- Industry/Practice
- Research Topics
- LaTeX help
- Math Comptetitions
- Math History
- Math Humor
- PlanetMath Comments
- PlanetMath System Updates and News
- PlanetMath help
- PlanetMath.ORG
- Strategic Communications Development
- The Math Pub
- Testing messages (ignore)

- Other useful stuff

## Recent Activity

new question: numerical method (implicit) for nonlinear pde by roozbe

new question: Harshad Number by pspss

Sep 14

new problem: Geometry by parag

Aug 24

new question: Scheduling Algorithm by ncovella

new question: Scheduling Algorithm by ncovella