Schur’s condition for a matrix to be a bounded operator on l2


Theorem 0.1

Let B be a matrix defined on T×T for some countable set T. If there exists a positive number C such that

tT|b(s,t)|<Cfor all s   𝑎𝑛𝑑   sT|b(s,t)|<Cfor all t,

then B is a bounded operatorMathworldPlanetmathPlanetmath on l2(T) with its operator norm B less than or equal to C.

  • Proof.

    Let x be a sequence in l2(T). We have

    Bx22 =sT|tTb(s,t)x(t)|2
    sT[tT|b(s,t)|(|b(s,t)||x(t)|)]2
    sT[(tT|b(s,t)|)(tT|b(s,t)||x(t)|2)]
    CsTtT|b(s,t)||x(t)|2
    CtT|x(t)|2sT|b(s,t)|
    C2tT|x(t)|2.

    Therefore we have Bx2Cx2 for all xl2(T), hence BC.

Title Schur’s condition for a matrix to be a bounded operator on l2
Canonical name SchursConditionForAMatrixToBeABoundedOperatorOnL2
Date of creation 2013-03-22 15:57:18
Last modified on 2013-03-22 15:57:18
Owner Gorkem (3644)
Last modified by Gorkem (3644)
Numerical id 5
Author Gorkem (3644)
Entry type Theorem
Classification msc 46C05
Synonym Schur’s Lemma
Synonym Schur’s Lemma for infinite matrices