# Sierpinski Erdős egyptian fraction conjecture

Erdős and Sierpinski conjectured that for any integer $n>3$ there exist positive integers $a,b,c$ so that:

$$\frac{5}{n}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$$ |

Title | Sierpinski Erdős egyptian fraction^{} conjecture |
---|---|

Canonical name | SierpinskiErdHosEgyptianFractionConjecture |

Date of creation | 2013-03-22 13:43:12 |

Last modified on | 2013-03-22 13:43:12 |

Owner | CWoo (3771) |

Last modified by | CWoo (3771) |

Numerical id | 8 |

Author | CWoo (3771) |

Entry type | Conjecture |

Classification | msc 11D68 |

Classification | msc 11A67 |

Synonym | Sierpiński Erdős egyptian fraction conjecture |

Related topic | UnitFraction |

Related topic | AnyRationalNumberWithOddDenominatorIsASumOfUnitFractionsWithOddDenominators |