## You are here

HomeSingmaster's conjecture

## Primary tabs

# Singmaster’s conjecture

Conjecture. (David Singmaster). With the exception of the number 1, no positive integer appears in Pascal’s triangle more than twelve times.

Numbering the top row of Pascal’s triangle (the tip with the single instance of 1) as row 0, and leftmost column as row 0, it is clear that each integer $n>2$ occurs at least twice, specifically, at positions $(n,1)$ and $(n,n-1)$. Singmaster was able to figure out that when there is a solution to

$n={F_{{2k}}F_{{2k+1}}\choose F_{{2k-1}}F_{{2k}}-1}-1={F_{{2k}}F_{{2k+1}}-1% \choose F_{{2k-1}}F_{{2k}}}$ |

(with $F_{i}$ being the $i$th Fibonacci number) the number $n$ occurs six times in Pascal’s triangle, and he showed that there are infinitely many such numbers. Empirical evidence suggests the actual maximum of instances for a number to occur in Pascal’s triangle may be less than twelve: Pascal’s triangle has been computed to millions of rows and no number (besides 1) has been encountered more than eight times.

## Mathematics Subject Classification

05A10*no label found*

- Forums
- Planetary Bugs
- HS/Secondary
- University/Tertiary
- Graduate/Advanced
- Industry/Practice
- Research Topics
- LaTeX help
- Math Comptetitions
- Math History
- Math Humor
- PlanetMath Comments
- PlanetMath System Updates and News
- PlanetMath help
- PlanetMath.ORG
- Strategic Communications Development
- The Math Pub
- Testing messages (ignore)

- Other useful stuff

## Recent Activity

new question: numerical method (implicit) for nonlinear pde by roozbe

new question: Harshad Number by pspss

Sep 14

new problem: Geometry by parag

Aug 24

new question: Scheduling Algorithm by ncovella

new question: Scheduling Algorithm by ncovella